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A Decomposable Algorithm for Contour Surface DisplayGeneration

Michael J. Zydz

Naval Postgraduate School,
Code 52 Dept. of Computer Science,

Monterey. California 93943

ABSTRACT

This paper is a study of a highly decomposable algorithm use-
ful for the parallel generation of a contour surface display. The
core component of this algorithm is a two-dimensional contouring
algorithm that operates on a single, 2 x 2 subgrid of a larger grid.
A model for the operations used to generate the contour lines for a
single subgrid is developed. The inadequacies of the currently pub-
lished algorithms. with respect to contour line generation for a
subgrid, are pointed out in a brief review of the available litera-
ture. A data structure, the contouring tree, is introduced as the
basis of a new algorithm for generating the contour lines for the
subgrid. The construction of the contouring tree. and the com-
pleteness of an algorithm based upon the contouring tree, within
the constraints of the contouring model, are shown.

Categories and Subject Descriptors: L3.3 [ Picture/Image Generar
tion ]: surface visualization; 1.3.5 [ Cmputatloaa Geomety and
Object Modeling ]: data structures, planar contours, surface
approximation, surface generation. surface representation. sur-
faces; 1.37 [ Three-Dimenmonal Graphics and Reali ]: line draw-
ings, line generation algorithms, surface plotting, surface visualiza-
tion, surfaces;

General Terms: contouring, contouring tree, contour surface
display generation;

1. Inbtroucticn
Contour surface display generation is one of the most frequently used

graphics algorithms [Zyda,1984], [Zyda.1983]. [Zyda,1982], [Zyda,1981].
[Barry,1979], [Faber,1979]. and [Wright,1979]. A contour surface is a visual
display that represents all points in a particular region of three-space <x.yz>
which satisfy the relation f(<xy.z>)=k, where k is a constant known as the con-
tour level The function f represents a physical quantity which is defined over
the three-dimensional volume of interest. The visual display created by this
algorithm is the collection of lines that belong to the intersection of both the set
of points that satisfy the relation f(<zTy,z>)-k, and a set of regularly spaced
parallel planes that pass through the region of three-space for which the

$Ths work has bea spparted by the NP Fodatiam Research Progrm
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relation is defined.
For this study, the function f is approximated by a discrete, three-

dimensional grid created by sampling that function over the volume of interest.
The three-dimensional grid contains a value at each of its defined points that
corresponds to the physical quantity obtained from the function, Le. the value
associated with point (xn.y zn) is v0 , where f(kn.yn.zn)=v0 . In order to minimize
confusion, we will specifjy tge value at a particUlar grid point (x.y.z) by a(x.yz),
and will specify the value at a particular point (x,y.z) of the function by f(xy,z).

The visual display of the contour surface is created from this three-
dimensional grid by taking two-dimensional slices of the grid. and constructing
the two-dimensional, planar contours for each slice at the designated contour
level A slice of a three-dimensional grid is a planar, orthogonal, two-
dimensional grid assigned a constant coordinate in three-space, Le. an x-y slice
of a(<xy,z>) corresponds notationally to a(<xy>) for a particular z coordinate.
The two-dimensional, planar contours created are the lines that satisfy the rela-
tion a(<xyz>)=k for a particular planar coordinate, either x. y, or z, where
again k is the constant contour level If we contour all x-y slices of the three-
dimensional grid at contour level k. we will have a stack of parallel contours
approximating the contour surface, each planar set of contours corresponding
to a particular z coordinate. If we contour all x-z slices of the three dimensional
grid. we again will have a stack of parallel contours approximating the contour
surface, each planar set of contours corresponding to a particular y coordinate.
Likewise, if we contour all y-z slices of the three-dimensional grid, we will have a
stack of parallel contours approximating the contour surface, each planar set of
contours corresponding to a particular x coordinate. The assemblage of the
three sets of parallel, planar contours. Le. the simultaneous display of all the
contours created for the x-y, x-z. and y-z planes of the three-dimensional grid.
produces a "chicken-wire-like" contour surface display (see Figure 1). The
three-dimensional contour surface display described in this study is created by
such a procedure.

Given that the core of the contour surface display generation algorithm is
the two-dimensional slice of the three-dimensional grid. it is best that we start
our study with an understanding of the operations performed on that slice. Fig-
ure 2 shows a single, x-y. two-dimensional grid. with the contours drawn
corresponding to contour level 50. F'igure 3 shows that same two-dimensional
grid, with the contours drawn corresponding to contour level 100. The two-
dimensional grid of those figures is a 4 x 5 grid. it has four values in the x direc-
tion, and five values in the y direction. The goal of the two-dimensional contour-
ing operation for such a grid is the determination of where lines are drawn on
that grid given a fixed contour level k. In order to develop an intuitive feel for
that determination mechanism, we restrict our focus to a small portion of the
complete two-dimensional grid, the 2 x 2 subgrid. The 2 x 2 subgrid is defined to
be that portion of the two-dimensional grid bounded by four adjacent grid
points. In the two-dimensional grid of Figures 2 and 3, the lower, lefthand 2 x 2
subgrid is bounded by points (1.1), (2,1). (2.2). and (1.2). The upper righthand
2 x 2 subgrid of the same example s bounded by points (3.4), (4.4), (4.5), and

2. A Model for Contouring the 2 x 2 Subpd
The procedure used to generate the contours for a single 2 x 2 subgrid is

the core part of two-dimensional contouring. If we compute the contours
corresponding to contour level k for all 2 x 2 subgrids of a two-dimensional grid,
then we will have determined the complete set of contours for that gridL Note
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that this does not make any statement as to the efficiency of that picture, i.e.
there can be duplicate copies of contours, particularly for contours drawn along
the border of a 2 x 2 subgrid (shared edge). In order to provide an intuitive feel
for contour generation on the 2 x 2 subgrid, we briefly summarize the operations
that comprise that procedure in order to highlight potential problems.

The procedure used to generate the contours for a particular 2 x 2 subgrid
first determines if any contours should be generated for that subgrid. That ,
determination is based upon whether any of the subgrid's edges contain the
desired contour level k. An edge contains contour level k if the value of that
contour level is within the range of values defined by the grid points that
comprise the edge. cee

The next part of the contour generation procedure for the 2 x 2 subgrid is
the computation of the contour edge intersections for any subgrid edges shown
to contain the contour level The point of intersection is computed through
linear interpolation, using the grid values assigned to the endpoints of the edge
and their corresponding coordinates. The point of intersection represents the
location on the subgrid edge corresponding to the contour level k.

The determination of the connectivity necessary to form the appropriate
contours from the list of edge intersections is the next part of the contour gen-
eration procedure. Before attempting to describe the procedure that assigns

*those connectivities, we first examine the subgrid's contour crossing possibili-
ties. We accomplish that by looking at Pigure 4, which shows all possible ways
for contours to cross or intersect a 2 x 2 subgrid.

In Figure 4. there are ten cases, each of which belongs to one of three con-
tour crossing categories: (1) single edge crossings of the 2 x 2. (2) double edge
crossings of the 2 x 2 and (3) constant edge borders at the contour level for the
2 x 2. The ten cases are drawn according to the following small set of rules for
contour crossings.

(1) Contours are directed by the values associated with the edges, and
are directed towards edge intersections.

(2) For non-equivalued edges, if contours are indicated for a particular
2 x 2 subgrid. Le. there are edges in the subgrid that contain the con-
tour level there is only one point of intersection for each edge of

'. that subgrfid.

(3) Contours are continuous. Le. if a contour enters a 2 x 2 subgrid. it
must also leave that 2 x 2 subgrid.

(4) Equivalued subgrid edges at the contour level are special cases, and
are drawn in their entirety. The only exception to this rule is that con-
stant valued 2 x 2 subgrids are not drawn. This is by convention.

The first rule, that of contours being directed by the values associated with
the edges, and contours being directed towards edge intersections, means that
one determines the placement of contours, and hence, the connectivity of the
edge intersections, by using both the values assigned to the endpoints of each
edge at the subgrid. and the computed intersections of that subgrid, The impor-
tance of this rule is twofold. First, it indicates that no outside forces or parame-
ters direct contour placement. Second. the rule indicates that computed inter-
setions are not the sole basis for determining the connectivity of the contours.
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The second rule, that of there being only one point of intersection for each
edge of the 2 x 2 subgrid means that for an edge intersected by a contour,
there are no other points along that edge with contour value k. Since the range
of values assigned to that edge is continuous and monotonic, the origin of this
rule is clear. Note that this rule does not apply to equivalued edges.

The third rule. that of contours being continuous, means that if a contour
enters a 2 x 2 subgrid, it must also leave that subgrid. i.e. the contour does not
terminate inexplicably in the middle of the 2 x 2. A corollary of this rule, in
combination with the first and second rules, states that contours entering a
subgrid through an edge must leave via a different edge. Again, note that this
corollary does not apply to cases with equivalued edges. This corollary holds
though for contours tangent to grid points of the subgrid if we arbitrarily assign
one of the subgrid edges to that grid point as the entering edge, and assign the
other edge as the leaving edge.

The last rule, that of eguivalued subgrid edges at the contour level being
special cases and being drawn in their entirety, is a rule based on visual expec-
tations for the contour for such a subgrid edge. The only exception to this rule,
that of not drawing constant valued 2x2 subgrids, is adopted by general con-
vention.

Once we have an idea of the types of contour crossings possible for a 2 x 2
subgrid, and once we have an outline of the rules used in composing those possi-
bilities, we can then address the problem of forming a procedure for assigning
connectivities to the computed edge intersections. Starting withl the simples
cases of igure 4, the equivalued edge cases, we clearly see that the connectivity
generation procedure for subgrids containing such edges at the contour level is
relatively simple once those equivalued edges have been detected. If we find
that we have a "constant 2 x 2", we do not need to issue any coordinates or con-
nectivities because by convention we have decided not to draw that case. The
other two possibilities, the "contour along one edge", or the "contours along two
edges" cases, are equally as simple. The only operation necessary once such
cases have been detected is to issue coordinates and connectivities correspond-
ing to the detected edges.

At first glance, given the edge intersections for a 2 x 2 subgrid the connec-
tivity generation procedure for the single contour cases of Figure 4 seems quite
easy. It appears as it the only operation that has to be done is to issue coordi-
nates and connectivities corresponding to the straight line between the two
poinLs of edge intersection. Such a procedure works well if we know that we
have a single contour crossing the subgrid. The only single contour crossing

* case for which this will not work is the "contour tangent to the 2 z 2" case, which
is an even simpler case for connectivity generation.

It is not until we consider the two contours crossing the subgrid cases of
Agure 4 that we realize the potential for problems with the above single contour
crossing procedure. A procedure based only on connecting edge intersections
cannot differentiate between cases such as the "two contours tangent to the
2 x 2, and the "contour across the diagnal" cases. There are other similar con-
nectivity generation problems evident for the two contours crossing cases. The
"two contours through adjacent edges" case bas four edge intersections. For
that case, information needs to be provided to the connectivity generation pro-
cedure that determines which of three possible intersection pairs should be con-
nected.

Now that we have established a background for the connectivity problem for
contour crossings of the 2 x 2 subgrid. we can detail the procedure used to
solve that problem. Before we describe that algorithm, we first briefly review

L.--t~ra. v_-
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some of the problems cited in the literature for two-dimensional contouring.

3. Two-Imenlonal Contouring lAterature Problems
The literature on two-dimensional contouring, and the use of two-

dimensional contouring for creating a contour surztu. display is extensive,
encompassing a number of fields ([Zyda.1984]. [Zyda.1983]. [Zyda.1982].
[Zyda 1981]. [Dutton.1977]. [Goid.1977]. [Wright,1979], [Cottafava .1969
[Dayhoff,1963], [Faber,1979]. (McLain.1974], [Sabin.1980], [Sutciffe.1980],
[Sutcliffe. 1976a], and [Sutcliffe, 1976b]. A thorough review of the historical
development of two-dimensional contouring algorithms and the properties of

*" those algorithms is found in [Sutcliffe. 1980]. Many of the contouring algorithms
presented in that study are flawed either in that they generate an incorrect pic-
ture for some contour crossing cases, or in that they require special handling
for "problem" 2 x 2 subgrids. Some of the typical algorithm problems detailed
are identical to those described above. Le. they concern "degenerate points",
grid points that are equal to the contour level, or "saddle points", 2 x 2 subgrids
where there are ambiguities as to which points to connecL In all of the algo-
rithms reviewed, no attempt is made to ftit the special cases inside of a general
algorithmic framework. This is quite evident for the subgrid having a saddle
point. That contour crossing case is handled by selecting the two lines "for
which the direction changes the least" when compared against neighboring
subgrids [Sutcliffe,1980]. Again. this requires special algorithmic resolution.
None of the papers attempts to build a general framework useful for the genera-
tion of the coordinates and drawing instructions for any 2 x 2 subgrid. The fol-
lowing section describes both a data structure, the contouring tree, and an algo-
rithm for using that data structure, that provide both a coherent framework for
2 x 2 subgrid contouring, and a comprehensive resolution to the 2 x 2 subgrid
crossing problem.

4. The Contouring 'free
A contouring tree is a data structure that represents the edge value rela-

tionships of a 2 x 2 subgrid in a form that permits the rapid generation of the
contour display for any contour level contained within the represented subgrid
(see F'igure 5). The formulation of the contouring tree is based upon the obser-
vation that for any two-dimensional grid a continuous series of contour displayscan be created for contour levels in the range of the minimum and maximum

Sues (see Figure 6. and [Zyda.1984, [Zyda.1983], [Zyda.1962], and

* The use of the contouring tree is outlined best with an example of a small
two-dimensional grid. Figures 2 and 3 depict the contours generated for con-
tmr levels 50 and 100. The contours at level 100 are closed contours, forming
simple, connected loops. The contours at level 50 are open contours. Figures 5
and 7 present the contouring trees created for two 2 x 2 subgrids of the 4 x 5
plane. The edges of the contouring trees correspond to the directed, downhill

* edges Inscribed on the 2 1 2 subgrids of the figures. There are eight directed
- edges on each subgrid. four for the boundary edges and four for the edges to the

subgrd's center point. The value used for the center point is the average of the
four values comprisng the corners of the2 z 2subgid. (A reference as tothe
usefulness of the center point average value in generating smooth contours is
found in [Sutcliffe, 1980].) The edges of the contouring trees are ordered, main-

. taing the same counterclockwise ordering as in the original subgrids. A "1"
.. under a node indicates that a setpoint display command should be generated for

any coordinate that is created along an edge that has that connectivity on its
lower valued node. A "0" indicates a drawto display command in a similar

S * *% * . ... q ,



30 60
2. 2) 150 (3,3)

3' ( ) ((),

*'

40 0

(1) (2,2) (2)5

0 1 0

40 6030
(3,2) (,) (2,3)

0 0I (3,) (l ,3)

*~r FIURE SAFAMPLE CONTOURING TREE FOR A 2 X 2 SUIGRIl



• Level 50
4. X '

2.9091 2.0000 1.0000 1
.j 2. 8333 2.1667 1.0000 0

3.0000 2.5000 1.0000 0

""2. 2500 2. 7500 1.0000 0

- *,14

,,.2.0000 2.8333 1.0000 0
Level 100

x y z D
2.4545 2.0000 1.0000 1
2.3125 2.3125 1.0000 0
2.0000 2.4167 1.0000 0

Column D is the drawing command. ie. I SETOINT. 0 DRAWTO.

Figure 5b
,. Coordinates Generated for Sample 2 x 2 Subgrid
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Tree rooted at value 90

Level 50

""~ X Y Z D

3.0000 1.8000 1.0000 1
2.8824 1.8824 1.0000 0

2.0000 1.0000 1.0000 1
2% Z0000 1.0000 1.0000 0

Level 100

x y z iD
no coordinates generated

Tree rootcd at value 150

Level 50

x Y Z D
2.0000 1.0000 1.0000 1
2.0000 1.0000 1.0000 0

2.8824 1.8824 1.0000 1
2.9091 2.0000 1.0000 0

Level 100

X Y Z D
2.0000 1.5000 1.0000 1
2.3704 1.6296 1.0000 0
2.4545 2.0000 1.0000 0

,tftft Column D is the drawing command, ie. I = SETPOINT. 0 = DRAIYTO.

Figure 7b
Coordinates Generated for Sample 2 x 2 Subgrid with Saddle Point
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* fashion and a "2' indicates a drawpoint.
Display generation from a contouring tree is accomplished by performing a

pro-order traversal of that contouring tree, producing a coordinate and drawing
instruction whenever the desired contour level is found to be within the range of
an edge of the contouring tree. A pre-order traversal visits the root. the left
subtree, the middle subtree, and then the right subtree. An edge's range is
defined to be the set of values between those associated with the nodes on either
end of the edge. More precisely, we say a contour level is within an edge if the
following condition holds:

lowerpode'syalue !contour.jevel < higher.pode's._yalue

For example, in Figure 5a at contour level 100, we issue coordinates and drawing
instructions for the edges (2.2)-(3.2), (2.2)-(2.5,.5), and (2,2)-(2,3). The drawing
instruction issued for each of these edges is again the one associated with the
lower valued node of the edge. The coordinate for each of these edges is gen-
erated by a linear interpolation of the edge's endpoint coordinates according to
the decrease in contour level along the edge. The coordinates and drawing
instructions generated for the contouring trees of Figures 5a and 7a are
represented-in Figures 5b and 7b.

* There are some subtleties not evident from the above that are best detailed
using a pseudocode description of the traversal algorithm. Figure 8 depicts the
traversal procedure for the contouring tree assuming a particular data organi-
zation. The notation is quite standard. The pointers to the descendent nodes of
NODE are LEFt(NODE), MiDDLE(NODE). and RIGHT(NODE). For each node of the
contouring tree, there are three pieces of information the value associated with
the node, VALUE(NODE), the coordinate associated with the node, XYZ(NODE).
and the connectivity associated with the node, CONN(NODE).

The generation of coordinates and drawing instructions from a contouring
tree begins with routine CONTOUI§BGRID of Fgure That routine receives a
pointer to the root node of the contouring tree. It then starts the traversal by
calling routine VISIT with that root node. Routine VISIT checks to see if the edge
defined by the passed in node and that node's ancestor, NODE and ANCESTOR.
contains the contour leveL If the edge does contain the contour level, the edge
intersection coordinate is computed using linear interpolation and issued to the
display along with the connectivity associated with that node, CONN(NODE). If
we issue a coordinate and connectivity for a node, we need to check the subtree
under that node for equivalued edges. If an equivalued edge at the contour level
in found, a coordinate and drawing instruction pair are issued for that
equivalued edge (routine VIIT$UBTREE). Once a coordinate and drawing
instruction pair have been issued for an edge, and once the subtree beneath
that edge has been investigated for equivalued edges, further traversal of that
subtree is terminated. If an edge is found not to contain the contour level the
traversal continues as depicted at the bottom of routine VISIT.

The pro-order traversal procedure described above generates the coordi-
nates and drawing Instructions for the part of the 2 x 2 subgrid the contouring
tree represents. To generate the coordinates for a larger two-dimensional grid,
we generate the contouring trees for each 2 x 2 subgrid of that grid, and then
apply the traversal procedure to those trees. We note here that no ordering is
required in the generation of coordinates for the 2 x 2 subgrids. The coordinate
and drawing instruction set generated for each 2 x 2 subgrid is complete and
independent of the picture generated for any neighboring 2 x Z
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Contouring Tree Description

Pointers to descendent nodes:

LEFT(NODE)

MIDDLE(NODE)
RIGHT(NODE)

.v
-., Values associated with each node:

VALUE(NODE): grid value
XYZ(NODE) : coordinate of that grid value.

-' CONN(NODE): drawing instruction.

Procedure CONTOURSUBGRID(ROOT)

VISIT(ROOT, ROOT) # begin the traversal of the pointed at
#contouring tree.

end.

-. .

'...

Procedure VISIT(NODE,ANCESTOR)

if(NODE == NULL)

'V return

if((VALUE(NODE) <= CONTOURJ1EVEL < VALUE(ANCESTOR))
OR

(VALUE(NODE) == CONTOURJEVEL AND NODE == ANCESTOR))

I Edge contains the contour level.
SI

Issue a coordinate computed via linear interpolation
along the edge.

Issue CONN(NODE) as the drawing instruction.

Figure 8
Pseudocode of the Traversal Algorithm for the Contouring Tree
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# Check subtrees of this node for equivalued edges.
VISITj;UBTREE(LEF(NODE),NODE)
VISIT...UBTREE(MIDDLE(NODE). NODE)

* VISIT...;UBTREE(R1GHT(NODE),NODE)

return j no need to examine the subLree further.

jjendif coordinates were generated for an edge.

VII(ETN E.NDE ii etsbre

VISIT(LEFTL(NODE). NODE) visit ef dl subtree.
VISIT(RIGHT(NODE).NODE) # visit right subtree.

return

end

Procedure VISIT_..UBTREE(SUBNODE.SUBANCESTOR)

if(SIJBNODE == NULL)

return

If(VALUE(SUBNODE) == CONTOUR-LEVEL)

Issue coordinates for the equivalued edge.
Setpoint on XYZ(SUBANCESTOR).
Drawto XYZ(SUBNODE).

VISIT§UBTREE( LEFr(SUBNODE).SUBNODE)
VISIT-UBTREEMIDDLE(SUBNODE),SUBNODE)

* VISlT.5UBTREE(RICHT(SUBNODE).SUBNODE)

return

end

Figure B (continued)
Pseudocode of the Traversal Algorithm for the Contouring Tree
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4.1. Contouring Tree Use Discussion
Having presented the use of the contouring tree, we must look back and

discuss its capabilities and limitations. The initial impression is that the con-
touring tree provides a nice, uniform framework for generating the coordinates
and drawing instructions appropriate to the 2 x 2 subgrid. The algorithm takes
care of the single contour crossing cases quite readily. The algorithm also takes
care of the difficult two contours crossing case for the 2 x 2 subgrid The algo-
rithm correctly handles subgrids containing equivalued lines at the contour
level The algorithm also handles subgrids containing a single grid point at the
contour level.

The core problems with this algorithm all concern issues of picture
efficiency. Since the display generated for each 2 x 2 subgrd is generated
independently of any neighboring 2 x 2 subgrids, equivalued lines at the contour
level on the border of a subgrid will be duplicated. A similar problem occurs for
subgrid corner values that equal the contour level If we display either of the
above cases on a calligraphic display device, we will see a bright line for the

. equivalued edge, and a bright point for the grid value equal to the contour level.
Another problem, also due to the independent computation of each 2 x 2
subgrid. is that no ordering is provided for coordinates that come out of this
algorithm. For calligraphic displays, this is a problem because for such devices
electron beam movement is expensive. A contour display that causes the max-
inum movement of the electron beam every other subgrid greatly decreases
the the vector capability of the calligraphic display device.

There are three possible solutions to the first problem, that of duplicate
vectors. The easiest solution is to choose an output display device for which
such picture inefficiencies do not matter, i.e. a raster display. Vector ordering
is also eliminated as a problem with this solution. The second solution to the
vector duplication problem is to set aside points and lines at the contour level
that correspond to subgrid boundaries. A final pass at the end of the computa-
tion for a complete two-dimensional plane could readily cull the duplicates. This
second solution does nothing for the vector ordering problem. If this solution to
the vector duplicates problem is utilized, one either doesn't worry about the
vector ordering, or performs a sort on the vectors. The third solution, and the

.44 most expensive of the three, is to merge the set of trees generated for the two-
dimensional grid such that duplicate edges in separate trees are eliminated.
This solution has the added benefit that the resultant contours are generated in
an order that solves the beam movement problem. This solution is not
described in detail here and the reader is referred to [Zyda.1981] for further
detail. For this study, the first and simplest solution is assumed, and conse-
quently, the expected output display device is the raster display.

M Contouring Tree Consetion
"Contouring tree construction is best understood if we describe that pro-

cedure in graph theoretic terms We begin by assuming that we have a graph of
five nodes, each node being one of the subgrid definition nodes or the center
node of average value. The eight edges on that graph are the subgrid boundary
edges, and the edges from each subgrid definition point to the center point of
average value. We can readily assign directions to each edge of this graph using
the values assigned to each node. Equivalued edges can be assigned an arbi-
trary direction. (One such assignment is to make equvalued edges along the
border point in a counterclockwise fashion, and equivalued edges from the
center point in towards the center.) With these assumptions, each 2 x 2 subgrid
Is pereived as a directed graph. The question then becomes, how do we obtain

Ar •



the contouring tree, or trees from this directed graph? We can put this question
in terms of graph theory if we notice that a contouring tree is a directed tree.
The problem then becomes one of obtaining the directed tree, or trees, from the
directed graph such that the order of edge attachment in the tree corresponds
to the order in the directed graph (the 2 x 2 subgrid). From graph theory, we
have the requirement that a directed tree has the in-degree of its root node
equal to zero, and the in-degree of every other node equal to one [Even. 1979].
To examine the in-degree of each node of the directed graph, we must construct
the in-degree matrix D for that graph. The in-degree matrix D of a directed
graph G is defined in [Even. 1979] as:

D(Lj) = in-degree(i), if i = j.

DOij) = -k, if i is not equal to j,
where k is the number of
edges in G from i to j
(i.e.. -1 for all our graphs).

Si' "/Figures 9 and 10 show the in-degree matricies for our example 2 x 2 subgrids.
From the figures. we note that the roots of the contouring trees are recog-

nizable from D as D(Li) = 0. This matches the first part of the directed tree
requirement. Further examination of the diagonal of the in-degree matricies
introduces two difficulties in our attempts to convert the directed graphs into
directed trees: (1) multiple roots (in-degree(v) = 0 for more than one node) and
(2) in-degree(v) > 1 for some nodes v. (Note: we have assumed that we have the
structure represented by the directed graph and that we can manipulate it.)

The first problem, that of multiple roots, is handled by producing multiple
sets of verticies and multiple in-degree matricies such that there Is only one
root per in-degree matrix. For our case, the maximum number of roots for a
single 2 x 2 subgrid is two. We eliminate this problem by alternately removing
each root node from the complete set of verticies and all edges attached to that
deleted node and then making separate in-degree matricies. The second prob-
lem in the conversion of the directed graph into a directed tree, that of in-
degree(v) > 1 for some nodes, is resolved by node duplication. For each diago-
nal entry D(i) = n. where n > 1, we create n-1 duplicates of that node, for a
total of n, taking care to copy the appropriate values, coordinates. etc. We then
reassign the original edges that went to the single node, such that each edge

* receives its own copy of the duplicated node. The edges that are reassigned are
those between each node of column i of D that has a -1 and each of the n dupli-
cate nodes. When performed for each in-degree matrix created, this operation
forms a new directed graph that is the desired directed tree

A. 5. L Drawing Command Placement
The above uection detailed the creation of the contouring trees for the 2 x 2

ubgrd utulizing nothing more than basic graph definitions, and simple con-
struction procedures. The only thing remaining for completing this construc-
tion is the placement of the drawing commands into the contouring trees.

Drawing commands are placed in the contouring tree to indicate when a
line enters the region represented by the contouring tree either from a neigh-
boring subgrid or from a location off of the grid. If we look at the structure of
the contouring tree, such as that exhibited in Figure 5. and consider that dur-
ing the traversaL the edges are examined in a counterclockwise, and downward

-
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"D -(ij) 1 2 3 4
1 0 -1 0 -1 -1

2 0 3 0 0 0
3 0 -1 1 -1 0

H'. 4 , 0 0 0 _3 0
-... 5 - 0 71 1 -1 1

.. Figure 9

?, In-degree Matrix for the Directed Graph Superimposed on a 2 x 2 Subgrid

.-..
C.'.%

D(i.j) 1 2 3 4 5
1 3 0 0 0 0

3 0 0 3 0 0

4 -1 0 -1 0 -1

5 -1 0 -1 0 2

"Dli.j) j 3 4 5 D(ij) 2 3 5

150 190
- 2 0 0 0 1 2 0 0 0

3 0 2 0-1 0 -1 -1
4 11 -1 0 -1 3 0 0 2 0

5 -1 1-1 0 1 1 5 -1 0 -1 1
D~~~.jFiur 110 5DU 12 3

-- "...In-degree Matrix for the Directed Graph Superimposedon a 2 x 2 Subgrid with Saddle Point4 1- 0- 0 02,
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ordering from the root, we note that we need to place setpoint drawing com-
mends on the lower valued node of each edge that presents a new lowest value
for the tree. (Note that the drawing command setpoint indicates to the display
device that it should move its "drawing instrument", Le. electron beam, pen,
etc., in a non-drawing mode to the specified location, and that it should then
place that drawing instrument into a drawing mode. Drawto indicates to the
display device that it should move its drawing instrument in a drawing mode to
the specified location. Drawpoint indicates to the display device that it should
move its drawing instrument in a non-drawing mode to the specified location.
and that it should then turn that drawing instrument on for the space of a single
point.) We insert these drawing commands by way of a pre-order traversal of
the directed tree, placing a setpoint command on each node that is a new lowest
value for the tree. This drawing command placement strategy is based upon the
fact that if we have a contour level for which we desire a picture, the first draw-
ing command we generate for any contouring tree is a setpoint. Although fairly
effective, this procedure does not provide a complete solution to drawing com-
mand insertion. Some neighboring edges in the contouring tree, Le. edges shar-
ing an ancestor node, have a "split" between them. Le., the edges are not

,-. immediate counterclockwise neighbors in the original grid. In this case, we
4".." must indicate the discontinuity in the contouring tree. We register the discon-
4."' tinuity on the lower valued node of the edge where the discontinuity occurs. For

example, in Figure 5a the edges (3,3)-(3,2) and (3,3)-(2,3) are neighbors in the
contouring tree but are not immediate neighbors in the original grid. We indi-
cate this split by placing a "" on the lower valued node of edge (3,3)-(2,3).

In order to recognize the nodes that require a drawing command indicating

a split edge in the contouring tree, we must first examine where split edges
occur in the 2 x 2 subgrid. These occur in the 2 x 2 subgrid wherever the
subgrid has edge directions and tree edge configurations as depicted in Figure

* ' 11, Le. where there are neighboring tree edges not directly corresponding to
neighboring subgrid edges. There are two cases in the figure.

In case 1, the split edge is edge (BD). This edge neighbors edge (B,C) in the
contouring tree but is not the immediate counterclockwise neighbor edge of
(BC). The lower valued node of edge (BD), D. receives a setpoint drawing com-
mand. From the figure, we see that node D has a possibility of being a "sink*',
Le., a node with all incoming edges. This depends upon the the direction of edge

-ip (A.D). There are two cases to consider. (la) A -> D or (Ib) D -> A. Case la,
A -> D, is easy to show as possible because it may be seen in Figure 5a. Case
lb. D -> A. is somewhat more diffcult, because we must show that it cannot
possibly occur within the relations specified on Figure 11. We begin by compiling
a small set of the given relations on the directed graph shown in the figure:

R 2,-

- -R >OAV. R>DC
RI.D.0B 4D

A .D

Case lb then becomes the question, is it possible to get D .A? Assume that
D .A is possible. Now we have B ;_D so we can replace D with B. We get B ;_A.
which is a contradiction of our original given. A IB. unless A = B. So we cannot
have D -> A uniless A = B. Can we eliminate the possibility of the edge from
A to B painting from the center outward in the case where A = B? We can do this
when we set up the original directed graph, biasing edge selection of constant

-.- T
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valued edges to point always towards the center. Since the direction assigned to
a constant edge is, in fact, arbitrary, we can assume that we never see the con-
dition D-> A. given the set of fixed directions assigned to case 1. Hence, for
case 1 of Figure 11, a split edge node is indicated during pre-order traversal of
the directed tree whenever we encounter, for the first time, a node represent-
ing a sink grid point. We now show a similar finding for case 2.

In case 2 of Figure 11, the split edge is edge (B,D). This edge neighbors
edge (BC) in the contouring tree but is not the immediate counterclockwise
neighbor edge of (B.C). The lower valued node of edge (B,D), D. receives a set-
point drawing command. From the figure, we see that node D is possibly a sink.
This depends on the direction of edge (A.D). There are two cases to consider:
(2a) A -> D or (2b) D -> A. Case 2a. A -> D, occurs in Figure 7a for the two
maxima example so we know this case is possible. Case 2b, D -> A, is more
difficult because we must show that it cannot occur. We list a few relations
describing the partial directed graph of the figure:

R >-C
"" R ?-_B

B ?-_C

B ?_D

The question that arises is whether it is possible to get D >A? Assume D ;_-A is
possible. Now we have B ;..D so we can replace D with B. This gives B IA. which
is a contradiction of our original given, A ;>,B. unless A = B. So we cannot have

.,~ D--> A unless A = B. Clearly we already have eliminated the possibility of the
i edge paiinrg from B to A by our initial configuration and by our biased edge
. selection for constant edges. Hence. for case 2 of Fligure 11. a split edge node is
.: indicated during pre-order traversal of the directed tree whenever we
i encounter. for the Anrt time. a node representing a sink grid point.

There are no other split edge configurations possible in the 2 x 2 subgrid. 2f
, we add a procedure that checks not only the new lowest value n the directed
,' itree but also the first encounter with a sink grid node during the same pre-order
, , traversal. we will correctly place the drawing commands in the directed tree,
i converting it into the desired contouring tree.

fL Cml/eeuemfor the Subib~d Contouring Algorthm

Analgorithm is complete with respect to the subgr'id contour generation
problem Vf it always generates the expected picture for any proffered subsrid.
Since it is impossible to test a subgrid contouring algorithm by trying it against
all possible subgrids, we must rely on another mechanism. Our ability to "
characterize the total number of possible contour crossing cases in as small a .
Mnber as ten brings to mind such a mechanism for valiating the contouring
tre algorithm.

I
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For each 2 x 2 case possibility, show that all possible contouring trees
generatable from the relations specified for the case either

(1) produce the equivalent picture (to the
expected),

(2) or are in actuality the contouring trees of
another case, i.e. we show that the equivalent set of
coordinates is impossible to generate from the con-
touring tree.

For each subgrid crossing case...

For each boundary point of the 2 x 2 subgrid...

Use the boundary point as the root of the tree.

Generate the 32 possible trees that have that root (and i-
tial tree configuration).

For each tree...

Can we obtain a set of coordinates and drawing
' instructions equivalent to the expected set for this

2 x 2 case?

If we have the equivalent picture, then we are OK Next.

"'I.'If we can't get the equivalent picture, we must show
that we violate the relations set up for the problem.
This implies a different case. NexL. If we don't violate
the relations, that implies a problem with the contour-
ing tree algorithm.

Figure 1
Outline of the Contouring Tree Algorithm Completeness Proof
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If we are able to show for each of the ten cases of Fiure 4 that all possible
contouring trees generatable from the relations specified for each case either

(1) produce a picture equivalent to that expected for the
case,

(2) or are in actuality the contouring trees of a different case,
Le. we show that the expected set of coordinates and drawing
instructions is impossible to generate from the contouring
tree (we violate the given relations).

then we will have shown completeness for the algorithm. This is a fairly large
proof, an outline of which can be seen in Fgiure 12.

The idea behind the proof for an individual case is to use each boundary
point of the subgrid as the root of the set of all possible trees generatable from
that root. When we fix the root for a contouring tree, we fix the three immediate
descendents of that root and the three edges to those descendents. This leaves
unspecified the placement of five edges in the contouring tree. If we assume
that each edge direction is possible, this means that once we fix the root of a
tree, there are 32 possible trees that can be generated. If we cycle through
each boundary point as the root of the tree, there are 32 times 4 possible trees
for each case. For each of the 128 possible trees, we then check to see if we can
obtain a set of coordinates and drawing instructions equivalent to the expected
set for the case (see Figure 4). If we obtain the equivalent picture from a tree.
we go on to the next tree (or case). If we cannot obtain the equivalent picture,
we must show that we violate the relations given for the case. Such a violation
implies that we have a different case, and hence, can go on to the next tree (or
case). The negative indications for the proof are if we cannot get the equivalent
picture but do not violate the relations set up for the case. Such an indication
would imply a problem with the contouring tree algorithm.

The magnitude of this proof is immense. There are ten different subgrid
cases, each with 128 possible contouring trees. The evaluation of this total set of
trees has been performed utilizing a program that systematically traverses each
possible tree, checking for either the equivalent picture, or a violation of the
given relations. The results of this study indicate that the contouring algorithm
is complete.

7. Ccmlduga..

This study has described an algorithm for generating the contour lines and
drawing instructions for a single 2 x 2 subgrid in a manner that is independent
from the calculations required for any other 2 x 2 subgrid. nis algorithm has

been shown to be part of a larger algorithm used to generate the contours for

two-dimensional grids composed of multiple 2 x 2 subgrids. It has also been
shown to be part of an even larger algorithm used to generate the contour sur-
face display for three-dimensional grids composed of multiple, parallel two-
dimensional grids. The fact that we can generate the contour lines for each
212 subgrid independently from the calculations required for any other 2 x 2
subgrid means that our algorithm for the generation of contour surface displays
is highly decomposable. This becomes quite striking if we consider that a typi-
cal 30 x 30 30 three-dimensional grid has 75.890 2 x 2 subgrids. For such a
case. there is a potential for 75,590 concurrent computations. Given a technol-
og" that allows such parallelism and assuming that we can both load and unload
the data from that system. it appears as If this algorithm has the potential for

I0.1 v~ ~ V* ~ *.*
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speeding up one of the most frequently used graphics computations.
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